Publications 12

Here we present a list of publications that were a result of projects funded by EuHIT or were published by members of EuHIT consortium.

Page 1 of 2

  • Article
    du Puits, Ronald; Resagk, Christian; Thess, André
    New Journal of Physics. 2013, Vol. 15, Issue 1, p. 13040. DOI: 10.1088/1367-2630/15/1/013040
    BOI
    • Publication URL http://stacks.iop.org/1367-2630/15/i=1/a=013040
    • Abstract We report highly resolved temperature measurements in turbulent Rayleigh–Bénard convection in air at a fixed Prandtl number \( Pr = 0.7 \). Extending our previous work (du Puits et al 2007 J. Fluid Mech. 572 231–54), we carried out measurements at various aspect ratios while keeping the Rayleigh number constant. We demonstrate that the temperature field inside the convective boundary layers of both horizontal plates is virtually independent on the global flow pattern accompanying the variation in the aspect ratio. Thanks to technical upgrades of the experimental facility as well as a significant improvement of the accuracy and reliability of our temperature measurement—and unlike in our previous work—we find that the measured profiles of the time-averaged temperature field neither follow a clear power-law trend nor fit a linear or a logarithmic scaling over a significant fraction of the boundary-layer thickness. Analyzing the temperature data simultaneously acquired at both horizontal plates, various transitions in the cross-correlation and the auto-correlation function of the temperature signals are observed while varying the aspect ratio \( \Gamma \). These transitions might be associated with a change in the global flow pattern from a single-roll mode at \( \Gamma = 1 \) toward a double- or a multi-roll mode pattern at higher aspect ratios.
  • Article
    van Gils, Dennis P. M.; Bruggert, Gert-Wim; Lathrop, Daniel P.; Sun, Chao; Lohse, Detlef
    Review of Scientific Instruments. 2011, Vol. 82, Issue 2. DOI: 10.1063/1.3548924
    TTF
  • Article
    du Puits, Ronald; Li, Ling; Resagk, Christian; Thess, André; Willert, Christian
    Phys. Rev. Lett.. 2014, Vol. 112, Issue 12, p. 124301. DOI: 10.1103/PhysRevLett.112.124301
    BOI
    • Publication URL http://link.aps.org/doi/10.1103/PhysRevLett.112.124301
    • Abstract Flow visualizations and particle image velocimetry measurements in the boundary layer of a Rayleigh-Bénard experiment are presented for the Rayleigh number \( \text{Ra} = 1.4 \times 10^{10} \). Our visualizations indicate that the appearance of the flow structures is similar to ordinary (isothermal) turbulent boundary layers. Our particle image velocimetry measurements show that vorticity with both positive and negative sign is generated and that the smallest flow structures are 1 order of magnitude smaller than the boundary layer thickness. Additional local measurements using laser Doppler velocimetry yield turbulence intensities up to \( I = 0.4 \) as in turbulent atmospheric boundary layers. From our observations, we conclude that the convective boundary layer becomes turbulent locally and temporarily although its Reynolds number \( \text{Re} \approx 200 \) is considerably smaller than the value 420 underlying existing phenomenological theories. We think that, in turbulent Rayleigh-Bénard convection, the transition of the boundary layer towards turbulence depends on subtle details of the flow field and is therefore not universal.
  • Article
    Griffin, Kevin; Wei, Nathan; van de Water, Willem; Bewley, Greg
    2016.
    GTF
  • Article
    Kaiser, Robert; du Puits, Ronald
    International Journal of Heat and Mass Transfer. 2014, Vol. 73, p. 752-760. DOI: 10.1016/j.ijheatmasstransfer.2014.02.033
    BOI
    • Publication URL http://www.sciencedirect.com/science/article/pii/S0017931014001501
    • Keywords Infrared thermography, Rayleigh–Bénard convection, Two-dimensional heat flux
    • Abstract We report highly resolved measurements of the local wall heat flux in turbulent Rayleigh–Bénard convection using an infrared camera. The measurements have been undertaken in a Rayleigh–Bénard cell with rectangular base of 2.50 m \( \times \) 0.65 m and a height of 2.5 m which is filled with air. First of all, it could be demonstrated that in a Rayleigh–Bénard cell with rectangular cross-section the time-averaged wall heat flux locally deviates by 30 from its mean. Furthermore, a strong correlation between the global flow structure inside the cell and the distribution of the local wall heat flux could be identified.
  • Article
    König, Franziska; Zanoun, El-Sayed; Öngüner, Emir; Egbers, Christoph
    Review of Scientific Instruments. 2014, Vol. 85, Issue 7. DOI: 10.1063/1.4884717
    • Publication URL http://scitation.aip.org/content/aip/journal/rsi/85/7/10.1063/1.4884717
    • Abstract The CoLaPipe is a novel test facility at the Department of Aerodynamics and Fluid Mechanics, Brandenburg University of Technology Cottbus-Senftenberg (BTU Cottbus-Senftenberg), set up to investigate fully developed pipe flow at high Reynolds numbers (\( Re_{m} \leq 1.5 \times 10^{6} \)). The design of the CoLaPipe is closed-return with two available test sections providing a length-to-diameter ratio of \( L/D = 148 \) and \( L/D = 79 \). Within this work, we introduce the CoLaPipe and describe the various components in detail, i.e., the settling chamber, the inlet contraction, the blower, bends, and diffusers as well as the cooling system. A special feature is the numerically optimized contraction design. The applications of different measuring techniques such as hot-wire anemometry and static pressure measurements to quantitatively evaluate the mean flow characteristics and turbulence statistics are discussed as well. In addition, capabilities and limitations of available and new pipe flow facilities are presented and reconsidered based on their length-to-diameter ratio, the achieved Reynolds numbers, and the resulting spatial resolution. Here, the focus is on the facility design, the presentation of some basic characteristics, and its contribution to a reviewed list of specific questions still arising, e.g., scaling and structural behavior of turbulent pipe flow as well as the influence of the development length on turbulence investigations.
  • Article
    Poulain, Cedric; Mazellier, Nicolas; Gervais, Philippe; Gagne, Yves; Baudet, Christophe
    Flow, Turbulence and Combustion. 2004, Vol. 72, Issue 2, p. 245-271. DOI: 10.1023/B:APPL.0000044414.48888.25
    • Abstract In this paper we report an experimental investigation of various statistical properties of the spatial Fourier modes of the vorticity field in turbulent jets for a large range of Reynolds numbers (530 ≤R\(\lambda \)≤ 6100). The continuous time evolution of a spatial Fourier mode of the vorticity distribution, characterized by a well-defined wavevector, is obtained from acoustic scattering measurements. The spatial enstrophy spectrum, as a function of the spatial wave-vector, is determined by scanning the incoming sound frequencies. Time-frequency analysis of the turbulent vorticity fluctuations is also performed for different length scales of the flows. Vorticity time-correlations show that the characteristic time of a Fourier mode behaves as the sweeping time. Finally, we report preliminary Lagrangian velocity measurements obtained using acoustic scattering by soap bubbles inflated with helium. Gathering a large number of passages of isolated bubbles in the scattering volume, one is able to compute the Lagrangian velocity PDF and velocity spectrum. Despite the spatial filtering due to the finite size of the bubble, the latter exhibits a power law, with the -2 exponent predicted by the Kolmogorov theory, over one decade of frequencies.
  • Article
    Talamelli, Alessandro; Persiani, Franco; Fransson, Jens H M; Alfredsson, P Henrik; Johansson, Arne V; Nagib, Hassan M; Rüedi, Jean-Daniel; Sreenivasan, Katepalli R; Monkewitz, Peter A
    Fluid Dynamics Research. 2009, Vol. 41, Issue 2, p. 21407. DOI: 10.1088/0169-5983/41/2/021407
    • Publication URL http://stacks.iop.org/1873-7005/41/i=2/a=021407
    • Abstract Although the equations governing turbulent flow of fluids are well known, understanding the overwhelming richness of flow phenomena, especially in high Reynolds number turbulent flows, remains one of the grand challenges in physics and engineering. High Reynolds number turbulence is ubiquitous in aerospace engineering, ground transportation systems, flow machinery, energy production (from gas turbines to wind and water turbines), as well as in nature, e.g. various processes occurring in the planetary boundary layer. High Reynolds number turbulence is not easily obtained in the laboratory, since in order to have good spatial resolution for measurements, the size of the facility itself has to be large. In this paper, we discuss limitations of various existing facilities and propose a new facility that will allow good spatial resolution even at high Reynolds number. The work is carried out in the framework of the Center for International Cooperation in Long Pipe Experiments (CICLoPE), an international collaboration that many in the turbulence community have shown an interest to participate in.
  • Article
    Alessio, S.; Briatore, L.; Ferrero, E.; Longhetto, A.; Giraud, C.; Morra, O.
    Boundary-Layer Meteorology. 2014, Vol. 60, Issue 3, p. 235-241. DOI: 10.1007/BF00119377
    • Abstract We performed an experimental study using scale models in a hydrodynamic rotating channel, concerning the interactions between fluid flows and obstacles of different shapes. The study was meant to analyze the characteristics of the wakes observed on the lee side of quasi-bidimensional obstacles, in a neutral atmosphere.

      The obstacles were half-cylinders (with aspect ratio 0.87), placed transversally on the channel bottom and totally submerged in the fluid. We call them “quasi-bidimensional” since their width was a little smaller than the channel width, thus allowing the flow to partially go round their edges.

      The simulations were performed in the rotating hydraulic channel of ICG-CNR in Turin, and included various conditions of rotation period and flow speed. An interesting behaviour of the wakes was found on the lee side of subsynoptic-scale obstacles, modelled in conditions of Reynolds-Rossby similitude. More precisely, if a given threshold of flow velocity is exceeded, wake size is constant and is fully determined by the height of the obstacle.
  • Article
    Niemela, J. J.; Skrbek, L.; Sreenivasan, K. R.; Donnelly, R. J.
    Nature. 2000, Vol. 404, Issue 6780, p. 837-840. DOI: 10.1038/35009036
    • Abstract Turbulent convection occurs when the Rayleigh number (Ra)—which quantifies the relative magnitude of thermal driving to dissipative forces in the fluid motion—becomes sufficiently high. Although many theoretical and experimental studies of turbulent convection exist, the basic properties of heat transport remain unclear. One important question concerns the existence of an asymptotic regime that is supposed to occur at very high Ra. Theory predicts that in such a state the Nusselt number (Nu), representing the global heat transport, should scale as \( \text{Nu} \propto \text{Ra}^{\beta }\) with \( \beta = 1/2 \). Here we investigate thermal transport over eleven orders of magnitude of the Rayleigh number (\( 10^{6} \leq \text{Ra} \leq 10^{17} \)), using cryogenic helium gas as the working fluid. Our data, over the entire range of Ra, can be described to the lowest order by a single power-law with scaling exponent \( \beta \) close to 0.31. In particular, we find no evidence for a transition to the \( \text{Ra}^{1/2} \) regime. We also study the variation of internal temperature fluctuations with Ra, and probe velocity statistics indirectly.